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SUPPORTS OF A CONVEX FUNCTION 

Let   C   be a real,   symmetric,   mxm,   positive-semi-definite matrix. 

Let R      =   -Ux,,   • . . ,   x    )  |  x.    is a real number,   i =  1,   • . . ,   m ^ ,   and let -Mx,,   ..^x    )x.    isa real number,   i =  1,   . . . ,   m y , [I mi ; 

Dlyhedral convex cone,   i. 

:|x|xeRm   and   xA ^ 0 | 

K c: R      be a polyhedral convex cone,   i. e. ,   there exists a real mxn matrix 

A   such that  K=-|x|xeR        and   xA ^0   y.    Consider the function   ^/: K -"   R 

T   1/2 defined by   ^(x) = (xCx   ) for all   x e K.     We wish to characterize the  set, 

U,  of all supports of 0,  where 

(1)        U = Rmr\ |u | xeK =>uxT^  (xCxT)1/2 

Let   R    = K   fy -lir I  ir   >   0    }■        and consider the  set 

(2) V=   |v(3xeRm,  TTCR^ 

T T and      v =    irA    + xC,   xCx      <  1,   xA   <.   0 

We shall demonstrate: 

THEOREM: 

U :=    V . 

We first show: 

LEMMA  1 

x,   yeRm=>(xCyT)    <    (xCxT) (yCyT)    . 

Proof:    If   x,   yeR        consider the polynomial  p(M  = X   xCx     + ZX.xCy   + yCy 

T (x+ X.y)C(x+ Ky)   .    Since   C    is positive-semi-definite,   p(X.) > 0    for all real 

numbers  X,   and thus the discriminant of p  is non-positive,   i.e. , 



4(xCyT)     - 4(xCxT) (yCyT)    <   0   . q.e.d. 

As an immediate application of Lemma  1 we show: 

LEMMA 2 

Vc U 

Proof:    Let   veV,  then there exist   x c R    ,   w e R       suchthat   v = TTA    +XC, 

T m T1 T T* T1 

xCx    <   1.    Now if    yeR    ,   yA   < 0,   then   vy     = yAir     + xCy       and   vy      < 

xCyT,   because   yA < 0,   irT > 0   and   yAir     < 0.    Thus,   vy     < (xCxTP (yCy1)^, 

T T Ji T by Lemma  1,    and   vy     < (yCy   )    ,    because   xCx     < 1.    Thus,     v eU . 

q. e. d. 

From the fact that   C    is positive-semi-definite,   it follows that: 

LEMMA 3 

The set    V   is convex. 

T T 
Proof:    If   x. eR    ,   TT. eR   ,   x. A< 0,   u,    = ir, A    + x, C,   x,Cx,     <  1,  X-, eR,  for                 k                 k      +       k—           kk              k          kk k      + 

T k  =   1,   Z    and   V    + X     =   1,   then-    X.   u, +\ ,u.  = '.X   ^    + X   172)A      + 

+ (X .x. + X.   x,)C,   (A. .x, + X   x.)A <.0f   \ jX, + \   x2fRm,   X   ir, + X.   IT   eR"    , 

T and   (X   x, + X   xz)C{>. .x, + V   x.)     -   1      < 

<    (X^^ X2xz)C(X1x1+X^x<,)
J   - X^jCx^- XzxzCx2     ^ 

xixz x.Cx,   - Zx.Cx,   + x.Cx, 

-    - X.X^  (x, - x->)C(x1 -  x   )     < 0,   because    C    is positive-semi- 

definite, q.e.d. 
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LEMMA 4 

The set   V   is closed. 

Proof:    Let -| w,    I be a sequence with   w.eR    ,  k =  1,   2     We define 

,  to be the smallest non-negative the (pseudo) norm of w.    ,   denoted    "|w.   !• 

integer  p   such that there exists a  k     and for all  k   > k   ,    x,    has at most p 

nonzero componerts.    Now,   suppose  u  is in the closure of  V,   i.e.,  there 

exist sequences    -|u,   >   ,     i ^u [   an^    l^-u  i   suc^ that 

(3) ^k611^ '  xkeRrn '  "k^ ^k^   + XkC 

xkA < 0      and    y^x^  <  1 . / 
rp j K—      1,^,. 

and    -^ u,    >    converges to   u 

Suppose the sequence   4 x,    >   is bounded,   then we may assume,   having taken 

an appropriate subsequence,   that for some     xeR      ,      -< x,    >■ ~* x   and thus, 

by (3),     xA   <   0   and   xCx     <    1.    Now,     yA   <,   0 ==>u, y    -  x, Cy     = IT, A   y      = 

T T T yAir       < 0,    all   k =^uy     - xCy     <   0.    Thus the system. 

y eR 

yA < 0 

(u- xC)yT >   Ü 

has no solution and by the usual feasibility theorenn for linear inequalities 

(see e.q.   (4) or (5))   the system: 
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IT eR n 

irA    =  u - xC 

has a solution,  and thus   ueV. 

We have just demonstrated that 

Since 

« {-.} is bounded,   then   ueV. 

-| x.    ^    +      -jx, Al     ^ m + n,   it is always possible to choose     -| Xi,. r 

and Wl+ IM is minimal. 

xs 

■i xr,   >     satisfying (3) and such that 

We shall show next that if     "I xv   r   '   "i  ^t,  f    are ^ chosen,  then   -i x,    !■    ii 

indeed bounded,   thus completing the proof.    Suppose then that   -|   x,     [   is not 

T  1/2 
bounded,  i.e.,     | ^ |     =     ^^Xv  ^ ~'   'x> •  and we may assume that I x, I > 0 

for all   k.    Let 

zk = 

1^1 
k =    1,   2.   .. 

then -j   z,    |   is bounded and we may assume that there is a     zeR such 

that the    z,     converge to  z  and |z|   =    1.    From (3) it follows that   z.A   <  0 

T                1 T and     z.Cz,     <     —: r-    for all   k.    Thus,    zA < 0   and   zCz     < 0.    But then, 
' Xk' 

T m 
from Lemma  1,   zCy     = 0   for all    yeR      ,   and   zC = 0.    Summarizing: 

(4) 
,m zeR     ,zA<0,    zC=0. 

Note that if   z   has a nonzero component,  then infinitely many   x,' s must 

have the same component nonzero,  this follows from the fact that   z    is the 

limit of 
"kl 

.    As a consequence,   if J X.    >   is any sequence of real 

numbers,  then  | -{x,  + X.,   z INK i If   zA ^   0,   and   aJ,  j = 1,  . . . , n. 



th 
denotes the  j       column of A,    let 

X.,   =   max 
k j zaj 

zaJ <   0 

Then we may replace,   in (3),   x.    by   xi+^uz   because   X., zaJ + x  aJ < 0   for 

all   j,    and (x, + X., z)A   <   0,      also   aC = 0   and thus   (xk+X.,z)C = x, C, 

T T (x,  + X, z)C(x,  + X, z)     =   x, Cx.     <   1.    However each (x,  + X, z)A   has at 

least one more zero component than   x. A,   contradicting the minimality of 

I   i ^ir   I    +      ixlr^'i I   *    Thus,     zA =   0     and we may replace,   in (3),   x,   by 

x, + X, z   for an arbitrary sequence   < X,    I   .    But   z ^ 0   and we can define 

X      so that   x,  + X, z   has at least one more zero component than   x,    has, 

thus   j i x,   + X   z >     <   N ^i. r     •    However,   (x,  + X   z)A = x. A,      and 

-i (x, + X, z)A y \    =  \ ■< ^A. f I »   contradicting the minimality assumption. 

q. e. d. 

Lastly,  we show: 

LEMMA 5 

u o v 

Proof:   Suppose   u ^ V .    By Lemmat     3 and 4   V   is a closed convex set, 

hence there is a hyperplane which separates   u    strongly  from   V (see [4]), 

Thus there exist   xeR       and   aeR   suchthat 

T T ux     >    a   >   vx all      v e V . 
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Now,   if ircR+ then   v = TTA      is in   V   (taking   x = 0   in the definition of V), 

Thus     xAir     = TTA  X     < a     for all   ir e R    ,  and   xA < 0,    xe K.       Also 

v = 0   is in   V, so that   a >  0.    If      ueU     then   0   <  a <   uxT < (xCx1^)1'2, 

T thus   xCx    > 0 and 

xC ,. 
v = : ; T.i/2     e v' (xCx   ) 

c on s equ e ntly „ 

.   _   T.l/2   . . xCxT .   ^   T.l/2 
(xCx   ) >   a   >      y   Y/2.    ~   txCx   ' 

(xCx   ) 

a contradiction.      Thus      u ^ U . q.e.d. 

Note:   A direct application of Lemmas   2 and 5 yields the theorem stated at 

the beginning. 
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